论文
[1] Tian, S.; Wang, J.; Jonas, U.; Knoll, W. Inverse Opals of Polyaniline and Its Copolymers Prepared by Electrochemical Techniques. Chem. Mater. 2005, 17.
[2] Cheng, W.; Wang, J. J.; Jonas, U.; Steffen, W.; Fytas, G.; Penciu, R. S.; Economou, E. N. The spectrum of vibration modes in soft opals. J. Chem. Phys. 2005, 123, 121104.
[3] Wang, J.; Li, Q.; Knoll, W.; Jonas, U. Preparation of Multilayered Trimodal Colloid Crystals and Binary Inverse Opals. Journal of the American Chemical Society 2006, 128, 15606-15607.
[4] Cheng, W.; Wang, J.; Jonas, U.; Fytas, G.; Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nature Materials 2006, 5, 830-836.
[5] Zhi, L.; Wang, J.; Cui, G.; Kastler, M.; Schmaltz, B.; Kolb, U.; Jonas, U.; Müllen, K. From Well-Defined Carbon-Rich Precursors to Monodisperse Carbon Particles with Hierarchic Structures. Advanced Materials 2007, 19, 1849-1853.
[6] Burkert, K.; Neumann, T.; Wang, J.; Jonas, U.; Knoll, W.; Ottleben, H. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter. Langmuir 2007, 23, 3478-3484.
[7] Wang, J.; Ahl, S.; Li, Q.; Kreiter, M.; Neumann, T.; Burkert, K.; Knoll, W.; Jonas, U. Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition. J. Mater. Chem. 2008, 18, 981-988.
[8] Still, T.; Cheng, W.; Retsch, M.; Sainidou, R.; Wang, J.; Jonas, U.; Stefanou, N.; Fytas, G. Simultaneous occurrence of structure-directed and particle-resonance-induced phononic gaps in colloidal films. Physical Review Letters 2008, 100, 194301.
[9] Wang, J.; Sun, L.; Mpoukouvalas, K.; Lienkamp, K.; Lieberwirth, I.; Fassbender, B.; Bonaccurso, E.; Brunklaus, G.; Muehlebach, A.; Beierlein, T. Construction of Redispersible Polypyrrole Core–Shell Nanoparticles for Application in Polymer Electronics. Advanced Materials 2009, 21, 1137-1141.
[10]Wang, J.; Sun, L.; Mpoukouvalas, K.; Fassbender, B.; Bonaccurso, E.; Brunklaus, G.; Muehlebach, A.; Rime, F.; Butt, H. J.; Wegner, G. Facile Synthesis of Spherical Polyelectrolyte Brushes as Carriers for Conducting Polymers to be Used in Plastic Electronics. Macromol. Chem. Phys. 2009, 210, 1504–1509.
[11]Mpoukouvalas, K.; Wang, J.; Tilch, R.; Butt, H. J.; Wegner, G. Impedance spectroscopy investigation of conjugated polymer coated core-shell nanoparticles. Journal of Applied Physics 2009, 106, 063706-063711.
[12]Sun, L.; Wang, J.; Bonaccurso, E. Nanoelectronic Properties of a Model System and of a Conjugated Polymer: A Study by Kelvin Probe Force Microscopy and Scanning Conductive Torsion Mode Microscopy. J. Phys. Chem. C 2010, 114, 341-346.
[13]Mühlebach, A.; Hafner, A.; Rime, F.; Mpoukouvalas, K.; Sun, L.; Wang, J.; Wegner, G.; Beierlein, T. Synthesis of polypyrrole-coated core/shell nanoparticles. Chimia International Journal for Chemistry 2010, 64, 49.
[14]Mpoukouvalas, K.; Wang, J.; Wegner, G. Conductivity of poly(pyrrole)-poly(styrene sulfonate) core-shell nanoparticles. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry 2010, 11, 139.
[15]Li, Z.; Wang, J.; Zhang, Y.; Wang, J.; Jiang, L.; Song, Y. Closed-Air Induced Composite Wetting on Hydrophilic Ordered Nanoporous Anodic Alumina. Applied Physics Letters 2010, 97, 233107-233107-233103.
[16]He, M.; Wang, J.; Li, H.; Jin, X.; Wang, J.; Liu, B.; Song, Y. Super-hydrophobic film retards frost formation. Soft Matter 2010, 6, 2396-2399.
[17]Fu, J.; Wang, J.; Li, Q.; Kim, D. H.; Knoll, W. 3D Hierarchically Ordered Composite Block Copolymer Hollow Sphere Arrays by Solution Wetting. Langmuir 2010, 26, 12336-12341.
[18]Zeng, X.; He, M.; Li, H.; Wang, J.; Song, Y.; Jiang, L. Investigating the Adhesion of Water Droplets at Low Temperatures. Langmuir 2011, 27, 14995-14998.
[19]Yuan, C.; Wang, J.; Chen, G.; Zhang, J.; Yang, J. Orientation studies of uniaxial drawn syndiotactic polystyrene/carbon nanotube nanocomposite films. Soft Matter 2011, 7, 4039-4044.
[20]Sun, L.; Wang, J.; Butt, H. J.; Bonaccurso, E. Influence of Relative Humidity on the Nanoscopic Topography and Dielectric Constant of Thin Films of PPy:PSS. Small 2011, 7, 950-956.
[21]Huang, Y.; Wang, J.; Zhou, J.; Xu, L.; Li, Z.; Zhang, Y.; Wang, J.; Song, Y.; Jiang, L. Controllable Synthesis of Latex Particles with Multicavity Structures. Macromolecules 2011, 44, 2404-2409.
[22]He, M.; Wang, J.; Li, H.; Song, Y. Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 2011, 7, 3993-4000.
[23]He, M.; Li, H.; Wang, J.; Song, Y. Superhydrophobic surface at low surface temperature. Applied Physics Letters 2011, 98, 093118 093111-093113.
[24]Zhang, Q.; He, M.; Zeng, X.; Li, K.; Cui, D.; Chen, J.; Wang, J.; Song, Y.; Jiang, L. Condensation mode determines the freezing of condensed water on solid surfaces. Soft Matter 2012, 8, 8285-8288.
[25]Zhang, J.; Wang, J.; Chen, G.; Yuan, C.; Yang, J. Observation of flower-like patterns in syndiotactic polystyrene/carbon nanotube nanocomposite films. Rsc Advances 2012, 2, 7964-7967.
[26]Li, K.; Xu, S.; Shi, W.; He, M.; Li, H.; Li, S.; Zhou, X.; Wang, J.; Song, Y. Investigating the effects of solid surfaces on ice nucleation. Langmuir 2012, 28, 10749-10754.
[27]He, M.; Zhou, X.; Zeng, X.; Cui, D.; Zhang, Q.; Chen, J.; Li, H.; Wang, J.; Cao, Z.; Song, Y.; Jiang, L. Hierarchically structured porous aluminum surfaces for high-efficient removal of condensed water. Soft Matter 2012, 8, 6680-6683.
[28]Chen, J.; Liu, J.; He, M.; Li, K.; Cui, D.; Zhang, Q.; Zeng, X.; Zhang, Y.; Wang, J.; Song, Y. Superhydrophobic surfaces cannot reduce ice adhesion. Applied Physics Letters 2012, 101, 111603.
[29]Zhang, Y.; Lu, T.; Zeng, X.; Zhou, H.; Guo, H.; Bonaccurso, E.; Butt, H.-J.; Wang, J.; Song, Y.; Jiang, L. Surface-mediated buckling of core–shell spheres for the formation of oriented anisotropic particles with tunable morphologies. Soft Matter 2013, 9, 2589-2592.
[30]Zhang, Q.; He, M.; Chen, J.; Wang, J.; Song, Y.; Jiang, L. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chemical Communications 2013, 49, 4516-4518.
[31]Zhang, B.; Wang, J.; Zhang, X. Effects of the hierarchical structure of rough solid surfaces on the wetting of microdroplets. Langmuir 2013, 29, 6652-6658.
[32]Xin, Z.; Su, B.; Wang, J.; Zhang, X.; Zhang, Z.; Deng, M.; Song, Y.; Jiang, L. Continuous microwire patterns dominated by controllable rupture of liquid films. Small 2013, 9, 722-726.
[33]Sun, L.; Wang, J.; Bonaccurso, E. Conductivity of individual particles measured by a microscopic four-point-probe method. Scientific Reports 2013, 3, 1991.
[34]Liu, Y.; Wang, J.; Zhang, X. Accurate determination of the vapor-liquid-solid contact line tension and the viability of Young equation. Scientific Reports 2013, 3, 2008.
[35]He, M.; Zhang, Q.; Zeng, X.; Cui, D.; Chen, J.; Li, H.; Wang, J.; Song, Y. Hierarchical Porous Surface for Efficiently Controlling Microdroplets' Self-Removal. Advanced Materials 2013, 25, 2291-2295.
[36]Feng, Y.; Chen, G.; Wang, J. A convenient quantitative study of polymer mesophase induced by isothermal annealing. RSC Advances 2013, 3, 12631-12634.
[37]Chen, J.; Dou, R.; Cui, D.; Zhang, Q.; Zhang, Y.; Xu, F.; Zhou, X.; Wang, J.; Song, Y.; Jiang, L. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS applied materials & interfaces 2013, 5, 4026-4030.
[38]Zhang, Y.; Dou, R.; Yang, H.; Wang, J.; Song, Y. Water adhesion-tunable film prepared with morphology-controllable core/shell particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 445, 92-96.
[39]Zhang, B.; Wang, J.; Liu, Z.; Zhang, X. Beyond Cassie equation: local structure of heterogeneous surfaces determines the contact angles of microdroplets. Scientific Reports 2014, 4, 5822.
[40]Yao, X.; Ju, J.; Yang, S.; Wang, J.; Jiang, L. Temperature‐Driven Switching of Water Adhesion on Organogel Surface. Advanced Materials 2014, 26, 1895-1900.
[41]Yang, H.; Su, M.; Li, K.; Jiang, L.; Song, Y.; Doi, M.; Wang, J. Preparation of patterned ultrathin polymer films. Langmuir 2014, 30, 9436-9441.
[42]Lv, J.; Song, Y.; Jiang, L.; Wang, J. Bio-inspired strategies for anti-icing. ACS nano 2014, 8, 3152-3169.
[43]Liu, Y.; Wang, J.; Zhang, X.; Wang, W. Contact line pinning and the relationship between nanobubbles and substrates. The Journal of chemical physics 2014, 140, 054705.
[44]Li, K.; Xu, S.; Chen, J.; Zhang, Q.; Zhang, Y.; Cui, D.; Zhou, X.; Wang, J.; Song, Y. Viscosity of interfacial water regulates ice nucleation. Applied Physics Letters 2014, 104, 101605.
[45]Han, S.; Feng, Y.; Chen, G.; Wang, J. Facile preparation of composites composed of high performance thermoplastic and difficult-to-process functional polymer. Rsc Advances 2014, 4, 31874-31878.
[46]Dou, R.; Chen, J.; Zhang, Y.; Wang, X.; Cui, D.; Song, Y.; Jiang, L.; Wang, J. Anti-icing coating with an aqueous lubricating layer. ACS applied materials & interfaces 2014, 6, 6998-7003.
[47]Chen, J.; Luo, Z.; Fan, Q.; Lv, J.; Wang, J. Anti‐Ice Coating Inspired by Ice Skating. Small 2014, 10, 4693-4699.
[48]Yao, X.; Wu, S.; Chen, L.; Ju, J.; Gu, Z.; Liu, M.; Wang, J.; Jiang, L. Self‐Replenishable Anti‐Waxing Organogel Materials. Angewandte Chemie 2015, 127, 9103-9107.
[49]Wang, Y.; Yao, X.; Chen, J.; He, Z.; Liu, J.; Li, Q.; Wang, J.; Jiang, L. Organogel as durable anti-icing coatings. Science China Materials 2015, 58, 559-565.
[50]Shao, M.; Wang, J.; Zhou, X. Anisotropy of Local Stress Tensor Leads to Line Tension. Scientific Reports 2015, 5, 9491.
[51]Liu, S.; Wang, L.; Zhang, B.; Liu, B.; Wang, J.; Song, Y. Novel sulfonated polyimide/polyvinyl alcohol blend membranes for vanadium redox flow battery applications. Journal of Materials Chemistry A 2015, 3, 2072-2081.
[52]Liu, S.; Wang, L.; Li, D.; Liu, B.; Wang, J.; Song, Y. Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/ quaternized poly(ether imide) for vanadium redox flow battery applications. Journal of Materials Chemistry A 2015, 3, 17590-17597.
[53]Yang, H.; Ma, C.; Li, K.; Liu, K.; Loznik, M.; Teeuwen, R.; van Hest, J.; Zhou, X.; Herrmann, A.; Wang, J. Tuning ice nucleation with supercharged polypeptides. Advanced Materials 2016, 28, 5008-5012.
[54]Liu, K.; Wang, C.; Ma, J.; Shi, G.; Yao, X.; Fang, H.; Song, Y.; Wang, J. Janus effect of antifreeze proteins on ice nucleation. Proceedings of the National Academy of Sciences 2016, 113, 14739-14744.
[55]Liu, J.; Guo, H.; Zhang, B.; Qiao, S.; Shao, M.; Zhang, X.; Feng, X. Q.; Li, Q.; Song, Y.; Jiang, L. Guided Self‐Propelled Leaping of Droplets on a Micro‐Anisotropic Superhydrophobic Surface. Angewandte Chemie International Edition 2016.
[56]He, Z.; Xie, W. J.; Liu, Z.; Liu, G.; Wang, Z.; Gao, Y. Q.; Wang, J. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Science Advances 2016, 2, e1600345.
[57]Zhu, Z.; Xiang, J.; Wang, J.; Qiu, D. Effect of Polyvinyl Alcohol on Ice Formation in the Presence of a Liquid/Solid Interface. Langmuir 2017, 33, 191-196.
[58]Wu, S.; Zhu, C.; He, Z.; Xue, H.; Fan, Q.; Song, Y.; Francisco, J. S.; Zeng, X. C.; Wang, J. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials. Nature Communications 2017, 8, 15154.
[59]Wu, S.; Li, L.; Xue, H.; Liu, K.; Fan, Q.; Bai, G.; Wang, J. Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates. ACS Nano 2017, 11, 9898-9905.
[60]Wang, Y.; Yao, X.; Wu, S.; Li, Q.; Lv, J.; Wang, J.; Jiang, L. Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer. Advanced Materials 2017, 29, 1700865.
[61]Lv, J.; Yao, X.; Zheng, Y.; Wang, J.; Jiang, L. Antiadhesion Organogel Materials: From Liquid to Solid. Advanced Materials 2017, 29, 1703032.
[62]Liu, Z.; He, Z.; Lv, J.; Jin, Y.; Wu, S.; Liu, G.; Zhou, F.; Wang, J. Ion-specific ice propagation behavior on polyelectrolyte brush surfaces. RSC Advances 2017, 7, 840-844.
[63]Liu, J.; Zhu, C.; Liu, K.; Jiang, Y.; Song, Y.; Francisco, J. S.; Zeng, X. C.; Wang, J. Distinct ice patterns on solid surfaces with various wettabilities. Proceedings of the National Academy of Sciences 2017, 114, 11285-11290.
[64]Jin, Y.; He, Z.; Guo, Q.; Wang, J. Control of Ice Propagation via Using Polyelectrolyte Multilayer Coatings. Angewandte Chemie International Edition 2017, 56, 11436-11439.
[65]He, Z.; Zheng, L.; Liu, Z.; Jin, S.; Li, C.; Wang, J. Inhibition of Heterogeneous Ice Nucleation by Bioinspired Coatings of Polyampholytes. ACS Applied Materials & Interfaces 2017, 9, 30092-30099.
[66]Geng, H.; Yao, B.; Zhou, J.; Liu, K.; Bai, G.; Li, W.; Song, Y.; Shi, G.; Doi, M.; Wang, J. Size Fractionation of Graphene Oxide Nanosheets via Controlled Directional Freezing. Journal of the American Chemical Society 2017, 139, 12517-12523.
[67]Geng, H.; Liu, X.; Shi, G.; Bai, G.; Ma, J.; Chen, J.; Wu, Z.; Song, Y.; Fang, H.; Wang, J. Graphene Oxide Restricts Growth and Recrystallization of Ice Crystals. Angewandte Chemie International Edition 2017, 56, 997-1001.
[68]Dong, Z.; Wang, J.; Zhou, X. Effect of antifreeze protein on heterogeneous ice nucleation based on a two-dimensional random-field Ising model. Physical Review E 2017, 95, 052140.
[69]Bai, G.; Song, Z.; Geng, H.; Gao, D.; Liu, K.; Wu, S.; Rao, W.; Guo, L.; Wang, J. Oxidized Quasi-Carbon Nitride Quantum Dots Inhibit Ice Growth. Advanced Materials 2017, 29, 1606843.
[70]Bai, G.; Gao, D.; Wang, J. Control of ice growth and recrystallization by sulphur-doped oxidized quasi-carbon nitride quantum dots. Carbon 2017, 124, 415-421.
[71]Guo, Q.; He, Z.; Jin, Y.; Zhang, S.; Wu, S.; Bai, G.; Xue, H.; Liu, Z.; Jin, S.; Zhao, L.; Wang, J. Tuning Ice Nucleation and Propagation with Counterions on Multilayer Hydrogels. Langmuir 2018, 34, 11986-11991.
[72]He, Z.; Liu, P.; Zhang, S.; Yan, J.; Wang, M.; Cai, Z.; Wang, J.; Dong, Y. Freezing Induced Turn-on Modality for Real-time Imaging in Cryosurgery. Ange. 10.1002/ange. 201813239.
[73]Zhang, Y.; Liu, K.; Li, K.; Gutowski, V.; Yin, Y.; Wang, J. Fabrication of Anti-Icing Surfaces by Short alpha-Helical Peptides. ACS Appl Mater Interfaces 2018, 10, 1957-1962.
[74]Jin, S.; Liu, J.; Lv, J.; Wu, S.; Wang, J. Interfacial Materials for Anti-Icing: Beyond Superhydrophobic Surfaces. Chemistry – An Asian Journal 2018, 13, 1406-1414.
[75]He, Z.; Liu, K.; Wang, J. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization. Accounts of Chemical Research 2018, 51, 1082-1091.
[76]Xue, H.; Lu, Y.; Geng, H.; Dong, B.; Wang, J. J. Hydroxyl groups on the graphene surfaces facilitate ice nucleation. Journal of Physical Chemistry Letters. 2019,10,2458-2462.
[77]Jin S.; Yin.L.;B Kong.; Wu.S; Z He.; X Han.;L Zhang.; Q Cheng.; Z Xin.; Wang, J. J. Spreading fully at the ice-water interface is required for high ice recrystallization inhibition activity.Science China Chemistry, 2019,62, 909-915.
[78]He, Z.; Liu, P.; Zhang, S.; Yan, J.; Wang, M.; Cai, Z.; Wang, J, J.; A Freezing-Induced Turn-On Imaging Modality for Real-Time Monitoring of Cancer Cells in Cryosurgery. Angew. Chem. Int En, 2019, 58, 3834-3837.
[79]Wu, S.; Zang, J.; Jin, S.; Wang, Z.; Wang, J.; Yao, Y.; He, Z.; Wang, J, J. Heterogeneous ice nucleation correlates with bulk-like interfacial water. Sci Adv. 2019, 5, 9825.
[80]Cheng, Q.; Liu, K.; Xue, H.; Huo, B.; Jin, S.; Zhou, X.; Wang, J, J. Modifying Surfaces with the Primary and Secondary Faces of Cyclodextrins To Achieve a Distinct Anti-icing Capability. Langmuir. 2019, 35, 5176-5182.
[81]Xue, B.; Zhao, L.; Qin, X.; Qin, M.; Lai, J.; Huang, W.; Lei, H.; Wang, J, J.; Wang, W.; Li, Y.; Cao,Y. Bioinspired Ice Growth Inhibitors Based on Self-Assembling Peptides.ACS Macro Letters.2019, 8,1383-1390.
[82]Sohail, M.; Ashfap, B.; Azeem, I.; Faisal, A.; Dogan, S.; Wang, J, J.; Duran, H.; Yameen, B. A facile and versatile route to functional poly surfaces via UV-curable coatings. Reactive and Functional Polymers.2019,144,104366.
[83]Zhua, C.; Gao, Y.; Zhu, W.; Jiang, J.; Liu, J.; Wang, J, J.; Franciscoa, J.;Zeng, X, C. Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. PNAS. 2019,116,16723-16728.
[84]Yang, H.; Diao, Y.; Huang, B.; Li, K.; Wang, J, J.;Metal–catechol complexes mediate ice nucleation.Chem Comm.2019, 55, 6413-6416.
[85]Bai, G.; Dong, G.; Liu, Z.; Zhou, X.; Wang, J, J.Probing the critical nucleus size for ice formation with graphene oxide nanosheets.Nature.2019, 576, 437-441.
[86]Han, N.; Liu ,K.; Zhang, X.; Wang, M.; Du, P.; Huang, Z.; Zhou, D.; Zhang, Q.; Gao, T.; Jia, Y.; Luo, L.; Wang, J, J.; Sun, X.;Highly efficient and stable solar-powered desalination by tungsten carbide nanoarray film with sandwich wettability.Science Bulletin.2019, 64,391-399.
[87]Xu, X.; Liu, L.; Geng, H.; Wang, J.; Jiang, Y.; Doi, M. Directional freezing of binary Colloidal suspensions: a model for size fractionation of graphene oxide. SOFT MATTER 2019,15, 243-251.
[88]Fan, Q.; Gao, Y.; Zhu, C.; Liu, J.; Zhao, L.; Mao, J.; Wu, S.; Xue, H.; Francisco, J.; Zeng, X.; Wang, J, J. Unraveling Molecular Mechanism on Dilute Surfactant Solution Controlled Ice Recrystallization.Langmuir. 2020, 36, 1691-1698.
[89]Fan, Q.; Li, L.; Xue, H.; Zhou, H.; Zhao, L.; Liu, J.; Mao, J.; Wu, S.; Zhang, S.; Wu, C.; Li, X.; Zhou, X.; Wang, J, J.Precise Control Over Kinetics of Molecular Assembly: Production of Particles with Tunable Sizes and Crystalline Forms.Angew Chem Int Ed Engl.2020, 59, 15141–15146.
[90]Shao, M.; Zhang, C.; Qi, C.; Wang, C.; Wang, J, J.; Yeand, F.; Zhou, X.;Hydrogen polarity of interfacial water regulates heterogeneous ice nucleation.Physical Chemistry Chemical Physics.2020, 22, 258-264.
[91]Liu, X.; Geng, H.; Sheng, N.; Wang, J, J.; Shi, G. Suppressing ice growth by integrating the dual characteristics of antifreeze proteins into biomimetic two-dimensional graphene derivatives.Journal of Materials Chemistry A. 2020, 8, 23555–23562
[92]Hua, W.; Wang, Y.; Guo, C.; Wang, J, J.; Li, S.; Guo, L. Ice Recrystallization Inhibition Activity of Protein Mimetic Peptoid. Journal of Inorganic and Organometallic Polymers and Materials. 2020.
[93]Qin ,Q.; Zhao, L.; Liu, Z.; Liu, T.; Qu, J.; Zhang, X.; Li, R.; Yan, L.; Yan, J.; Jin, S.; Wang, J, J.; Qiao, J.; Bioinspired L‑Proline Oligomers for the Cryopreservation of Oocytes via Controlling Ice Growth. ACS Applied Materials & Interfaces. 2020, 12, 18352-18362.
[94]Yuan, Q.; Xue, H.; Lv, J.; Wang, J, J.; Shi, S.; Russell, T.; Wang, D.Size-Dependent Interfacial Assembly of Graphene Oxide at Water–Oil Interfaces.The Journal of Physical Chemistry B.2020, 12,4835-4842.
[95]Jin, S.; Liu, Y.; Deiseroth, M.; Liu, J.; Backus, E.; Li, H.; Xue, H.; Zhao, L.; Zeng, X.; Bonn, M.; Wang, J, J.Use of Ion Exchange To Regulate the Heterogeneous Ice Nucleation Efficiency of Mica.Journal of the American Chemical Society. 2020, 142,17956-17965.
[96]Li, L.; Fan, Q.; Xue, H.; Zhang, S.; Wu, S.; He, Z.; Wang, J, J.Recrystallized ice-templated electroless plating for fabricating flexible transparent copper meshes.RSC Advances.2020, 10,9894-9901.
[97]Zhao, G.; Zou, G.; Wang, W.; Geng, R.; Yan, X.; He, Z.; Liu, L.; Zhou, X.; Lv, J.; Wang, J, J.Rationally designed surface microstructural features for enhanced droplet jumping and anti-frosting performance.Soft Matter.2020, 16, 4462-4476.
[98]Zhao, G.; Zou, G.; Wang, W.; Geng, R.; Yan, X.; He, Z.; Liu, L.; Zhou, X.; Lv, J.; Wang, J, J. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces.ACS Applied Materials & Interfaces.2020, 12,7805-7814.
[99]Wang, Z.; Yang, B.; Chen, Z.; Liu, D.; Jing, L.; Gao, C.; Li, J.; He, Z.; Wang, J, J.Bio-inspired Cryoprotectants of Glucose-based Carbon Dots.ACS Applied Bio Materials.2020, 2,3785-3791.
[100] Jin, Y.; Wu, C.; Yang, Y.; Wu, J.; He, Z.; Wang, J, J.Inhibiting Condensation Freezing on Patterned Polyelectrolyte Coatings.ACS Nano.2020, 14,5000-5007.
[101] He, Z.; Wu, C.; Hua, M.; Wu, S.; Wu, D.; Zhu, X.; Wang, J, J.; He, X. Bioinspired Multifunctional Anti-icing Hydrogel.Matter.2020, 2,723-734.
[102] Wu, C.; Geng, H.; Tan, S.; Lv, J.; Wang, H.; He, Z.; Wang, J, J.Highly efficient solar anti-icing/deicing via a hierarchical structured surface.Materials Horizons.2020, 7,2097-2104.
[103] Sun, Y.; Liu, J.; Li, Z.; Wang, J, J.; Huang, Y. Nonionic and Water-Soluble Poly(D/L‑serine) as a Promising Biomedical Polymer for Cryopreservation.ACS Appl. Mater. Interfaces.2021, 13, 18454-18461.
[104] Zhang, S.; Zhang, C.; Wu, S.; Zhou, X.; He, Z.; Wang, J, J.Ion-Specific Effects on the Growth of Single Ice Crystals.The Journal of Physical Chemistry Letters.2021, 12,8726–8731.
[105] Fan, Q.; Dou, M.; Mao, J.; Hou, Y.; Liu, S.; Zhao, L.; Lv, J.; Liu, Z.; Wang, Y.; Rao, W.; Jin, S.; Wang, J, J.Strong Hydration Ability of Silk Fibroin Suppresses Formation and Recrystallization of Ice Crystals During Cryopreservation.Biomacromolecules.2021
[106] Liu, Z.; Wang, Y.; Zheng, X.; Jin, S .; Liu, S.; He, Z.; Xiang, J.; Wang, J, J. Bioinspired Crowding Inhibits Explosive Ice Growth in Antifreeze Protein Solutions.Biomacromolecules.2021, 22.
[107] Habib, M.; Wu, S.; Fan, Q.; Magu, T.; Yao, X.; Lv, J.; Wang, J, J. Bioinspired in situ repeatable self-recovery of superhydrophobicity by self-reconstructing the hierarchical surface structure.Chemical Communications.2021, 68.
[108] Wang, Z.; Lin, B.; Sheng, S.; Tan, S.; Wang, P.; Tao, Y.; Liu, Z.; He, Z.; Wang, J, J. Bioinspired Anti-Icing Hydrogel Enabled by Ice-Nucleating Protein.CCS Chemistry.2021, 3, 473–480.
[109] Xue, H.; Fu, Y.; Lu, Y.; Hao, D.; Li, K.; Bai, G.; Yang, Z.; Wang, J, J.; Zhou, X. Spontaneous Freezing of Water between 233 and 235 K Is Not Due to Homogeneous Nucleation.Journal of the American Chemical Society.2021, 143. 13548-13556.
[110] Hao, T.; Zhu, Z.; Yang, H.; He, Z.; Wang, J, J. All-Day Anti-icing/Deing Film based on Combined Photo-Electro-Thermal Conversion.ACS Appl. Mater. Interfaces.2021, 13. 44948-44955.
[111] Zheng, X.; Liu, J.; Liu, Z.; Wang, J, J. 仿生控冰材料用于细胞及组织的冷冻保存.Acta Chim. Sinica.2021, 79. 729-741.
[112] Liang, Z.; Zhu,Z.; Han, Y.; Li, C.; Gong, W.; Li, J.; Wang, Z.; Zhang, H.; He, Z. ; Wang, J, J.防冰材料研究进展及其在风电领域应用展望.化学通报(Chemisty).2021.
[113] Zhang, H.; Zhao, G.; Wu, S.; Alsaidd, Y.; Zhao, W.; Yan, X.; Liu, L.; Zou, G.; Lv, J.; He, X.; He, Z.; Wang, J, J.Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions.PNAS. 2021, 79, 2100978118.
[114] Sheng, S.; Zhu, Z.; Wang, Z.; Hao, T.; He, Z.; Wang, J, J. Bioinspired solar anti-icing/de-icing surfaces based on phase-change materials.Science China Materials.2021.